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Structure of the Set of Annihilators 

Karsten Keller 1 
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We investigate the right annihilator lattice of a *-ring and ask whether it is 
orthomodular with respect to a naturally given involution, in particular, we 
introduce a new class of *-rings with orthomodular right annihilator lattice. 

INTRODUCTION 

It is well known that the projection set o f a  Baer*-ring (Berberian, 1972) 
forms a complete orthomodular lattice. 

There are many *-rings which only have a few projections, but many 
right (respectively left) annihilators. Since a right annihilator forms a substi- 
tute for a projection in a natural way, it makes sense to investigate the poset 
of  the right annihilators instead of  the projection poset. 

We shall start our considerations with the lattice of regular subsets 
corresponding to an orthogonality relation (Kalmbach, 1983) on a given 
set. Applying this general concept, we consider the right annihilator set of  
a *-ring and, more generally, of  a *-semigroup. 

In all cases, the main question dealt with is whether the obtained lattices 
are orthomodular.  

In particular, we shall prove orthomodularity for a class of  *-rings in 
which the additive structure and the structure of the right annihilator set are 
closely connected. 

1. SYMMETRIC RELATIONS AND O R T H O M O D U L A R I T Y  

Let (S, A) be a set Swi th  a symmetric relation _s on it. Then l :  2 s 2  s 
with M • = {s~S] ( V t 6 M ) ( s  s t)} is a closure operator, and it is well known 
that the set ~ = {M_~ S] M •177 M} of  all • (l-closed) subsets of  S 
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forms a complete bounded lattice with respect to the restriction of the inclu- 
sion relation to ~ .  Here S is the greatest, S • the least element of ~ .  The 
infimum and the supremum of a family (Ri)a~1 are given, respectively, as 
follows: 

A R , = 0 R , , ,  ; V R , =  R, = R (1.1) 

Moreover, _1_ is an involution on N, i.e., for all Q, ReN,  

R • • = R (1.2) 

Q<R implies R• • (1.3) 

In the theory of quantum structures the above relation J_ (mostly requiring 
some additional conditions) is said to be an orthogonality relation [for an 
extensive survey, see Dietz (1984) and Kalmbach (1983)]. 

An algebra (P;  v ,  ^ ,  • 0, 1) is called an ortholattice if (P;  v ,  ^ )  is 
a lattice with least element 0 and greatest element 1, and l is an involution, 
with 

1 =p  vp  j- (hence 0 =p  Ap • for all peP (1.4) 

It is said to be an orthomodular lattice if additionally, for all p, qeP, 

p<q implies q = p v ( q ^ p  • (1.5) 

Many authors have investigated the assumptions under which an orthogon- 
ality relation (with additional conditions) induces an orthomodular lattice 
of • sets. Let us give conditions equivalent to orthomodularity for 
the general case. The first (b) (see below) was found by Finch (1970) and 
the second one (c) can be found in Dietz (1984, Section 1, Lernma 3). By 
an orthogonal set we mean a set M~_S with sLt or s = t for all s, teM, and 
M Z N  (M, N~_S) means s i t  for all seM and teN. 

Proposition 1.1. Let (S, •  be as above. Then: 

(i) (~ ;  A, V, • S • S) is an ortholattice iff S • = {seSlsIs}. 
(ii) If S •  {seSls• the following conditions are equivalent: 

(a) ~ is an orthomodular lattice. 
(b) For each R e ~  and every maximal orthogonal subset M of R, 
M •177 = R. 
(c) For each orthogonal set M and each se S there exists an ortho- 
gonal set M' with M~_M' and (Mw {s} )•177 =(M' )  •177 
(d) For all M, N~_S and s, teS, s •  and ( M u  N)•177 
implies si t .  
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Proof. Since (i) is obvious, we only show (ii). 
(a)=~(b). Let ~ be orthomodular, let R e ~ ,  and let M be a maximal 

orthogonal subset of R. Then M'• R. 
Assuming M " ) ~ R ,  by orthomodularity, one obtains R n M • ~ S ' .  

For any s~(R n M• • the set M w  {s} is an orthogonal subset of R, 
which contains M. This contradicts the maximality of M. 

(b)~(c) .  Let M~_S be an orthogonal set, let s~S, and assume that (b) 
is valid. By Zorn's lemma we can choose a maximal orthogonal subset 
M' of ( M u  {s}) •177 containing M. Now ( M u  {s))•177 •177 follows 
from (b). 

(c)=~(a). Assume (c) and that ~ is not orthomodular. Then it is easy 
to see that there exist Rj, R2 E ~ with R1 ~ R2, but R2 n RI • = S -L. 

Choose a maximal orthogonal subset M of R I .  If M•177 let 
seRj \M •177 If M•177 then M is also a maximal orthogonal subset of 
R2. In this case let s~R2\M •177 

Now it is easy to see that M cannot be extended to an orthogonal set 
M' with (M w {s} ) "  = (M') •177 which contradicts (c). 

Finally, we show the equivalence of (a) and (d). 
(d)=~(a). Assume (d) and that ~ is not orthomodular. Then again 

choose Rj, R2e~  with R~ ~ R2, but R2 n Rj • = S • For M = Rj and N =  R~, 
M I N  and (Mw N)•177 By (d), M•177 • which implies R~_R~,  and 
this contradicts R~ # R2. 

(a)=~(d). Assume orthomodularity of ~ and let M, N~_S and s, t~S 
with s_I_LN•177 and (Mw N) •177 S, but sC_t. Then 

M ~- _ (M w {s} )• ___ N •177 

and since tEM • but s3_t, M• r  •177 By orthomodularity, M• c~ N• ~ S  • 
which contradicts (M • c~N•177 = ( M u  N)•177 [] 

. ON THE RIGHT ANNIHILATOR LATTICE 
O F  A * - S E M I G R O U P  

A *-semigroup (S; . ,  *) is a semigroup ( S ; . )  with involution, i.e., a 

for all s, t~S. 

s** =s  (2.1) 

(s. t)*= t*. s* (2.2) 

Assuming that S has a zero element 0, for M___ S, let 

I(M) = {s E S[ (Vt ~ M) (st = O) } 

unary operation with 
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be the left annihilator and r (M)= {s ~ S I(Vt e M )(ts = 0)} be the right annihil- 
ator of M. Investigating the structure of  the set of  right (respectively left) 
annihilators, we can apply the results of Section 1, namely s3-t iff s ' t = 0  
(respectively s3,'t iff st* = 0) defines a symmetric relation 3, (respectively J_') 
on S. The following statements are easy to show and are left to the reader. 

Lemma 2.1. Let S be a *-semigroup with 0. Then: 

(i) M •  * [respectively M •  *] for all 
M ~ S .  

(ii) M • 1 7 7  [respectively M•177 for all M G S .  
(iii) ~ t=  {M I •  (respectively { M z ' r = M I M c _ S } )  is the 

set of all right (respectively left) annihilators. It 

Since * induces a correspondence between right and left annihilators, it 
suffices to study the right annihilator set. 

The results in Section 1 imply the following result. 

Proposition 2.2. I f S  is a *-semigroup with 0 and withproper involution, 
i.e., s*s = 0 implies s = 0, then (a)-(d) of  Proposition 1.1 are equivalent. 

Example 2.3. Let (P;_<, 0, 1, i) be a partially ordered set with a least 
element 0, a greatest element 1, and an involution i, and let A be the set of  
all antitone maps on P. Further, let S be the set of  all sEA for which there 
exists an element t of  A such that (s, t) forms a Galois connection, i.e., 
s o t(q) > q, t o s(q) >_ q for all qe P. Since t is uniquely determined by s, which 
an easy computation shows, the notion s* = t makes sense. Note that the 
double (Sp, s~) with (q~e)  

{~ for q < p  (2.3) 
Sp(q) = else 

{1 for q = 0  (2.4, 
s~(q) = else 

for all p e P  forms a Galois connection with s*(1) =p.  An easy calculation 
shows that (Sp,-, *) with 

s . t=s  o i o t (2.5) 

forms a *-semigroup with 0 = s,. Note that i is a multiplicative unit of S. 
Moreover, 

r (M)  = {s~SI(VtEM)(s(1)  >io t*(1))} 

for each subset M of S. 
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For p e P, let Rp = {s s S I s(1) ~ i(p) }. Then, taking into consideration 
that s*(1)=p, Ri~p)=Rp ~ for all psP.  This shows that Rpe~  for all peP.  
Moreover, p ~ R r is an order-isomorphic embedding of P into ~,  and one 
has R0={sj} and RI=S. ~ is the Dedekind-MacNeflle completion of 
{RplpeP}. By Proposition 1.1(i), ~ is an ortholattice iff * is a proper 
involution. �9 

An immediate consequence of the considerations in Example 2.3 is the 
following representation result (cf. also Blyth and Janowitz, 1972). 

Proposition 2.4. Each complete lattice P with involution is isomorphic 
to the right annihilator lattice of a *-semigroup S with 0. If P is an ortho- 
lattice, the involution can be chosen to be proper. 

A sufficiently well-investigated class of *-semigroups is the class of 
Foulis semigroups. We mention only that each orthomodular lattice can be 
represented by the projection lattice of a Foulis semigroup and refer the 
reader to Blyth and Janowitz (1972) and Foulis (1960) (an additional 
remark: Foulis, who introduced this class of *-semigroups, called them 
Baer*-semigroups). 

3. A N E W  C L A S S  OF *-RINGS 

Let (S; +, ", *) be a *-ring, i.e., the multiplicative semigroup of S forms 
a *-semigroup, and, for all s, teS, 

(s+ t)* =s* + t* (3.1) 

The aim of this section is to investigate the order structure of the right 
annihilator set of such rings. Unfortunately, even in the commutative case 
the right annihilator lattice can have a very unsatisfactory structure, as the 
following example shows. 

Example 3.1. Let S be the residue class ring modulo 4 with the identical 
involution *. Then ~ =  {{0}, S, {0, 2}} fails to be an ortholattice; one has 
{0, 2} l = {0, 2}. �9 

Getting *-rings with nicer properties, we introduce the following 
concept: 

Definition 3.2. A *-ring S with proper involution is said to be a ring 
with annihilator addition property (AAP-ring) if, for all R e ~ ,  

S= R + R • (3.2) 

Theorem 3.3. Let S be an AAP-ring. Then ~ is a complete orthomodu- 
lar lattice. 
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Proof Let Rj, R2E,~ and Rj _~ R2. Then for each sER2 choose elements 
Q(s) in R~ and P(s) in Ri u with s=  P(s)+ Q(s) and let X =  { P(s)IseR2} and 
R3 =rl(X). 

We have R3~R{, hence R3LR1. 
Moreover, for each xeX, there exists an se R2 with x = P(s). Therefore, 

x=s-Q(s)eR2,  and we obtain X~_R2, hence R3~_R2. 
Finally, R2~Rj +X~Rj  + R3c:z Ri v R3~R2. 
Let us summarize: For all R~, R2 E,~ with R~ _= R2, there exists an R3 e 

with R~LR3 and Rz=R~ v R3. This is equivalent to the orthomodularity 
of R. �9 

The following example shows that in general orthomodularity of ~ does 
not imply that the given *-ring is an AAP-ring. 

Example 3.4. The ring C(I) of all complex-valued functions on a closed 
real interval I with f*(x)=f(x)  for all f e  C(I) forms a commutative *-ring 
with proper involution. Taking into consideration that each (right) annihil- 
ator of a set M of functions on I corresponds to the regular-closed set 
cl({x~ll (3feM)(f(x)  ~0)} ) (Engelking, 1977), it is easily seen that ~ is a 
Boolean algebra and that S fails to be an AAP-ring. �9 

The example also shows that a sub-*-ring So of an AAP-ring S need not 
be an AAP-ring, namely C(I) is contained in the AAP-ring of all complex- 
valued functions on L 

Nevertheless, if we require that S admits a multiplicative unit 1 and 
that So is an ideal, then the annihilator addition property is preserved. 

Theorem 3.5. If  S is an AAP-ring with 1, then each *-symmetric ideal 
So of S is an AAP-ring. 

Proof Let R0 be a right annihilator in So and R=Ro~• Then 
R • = R~ _ R~, where the prime denotes the involution in the right annihilator 
lattice of So. 

Further, So = SSo = RSo + R• and, since right annihilators form right 
ideals, RSo ~_ R c~ So and RI So ~ R l n So. Therefore, So ~_R n So+ R z n So. 

Finally, R c~ So = R0 L• n So ~_ (R~) 1 n So ~- Ro and R -L n So = R~ n So = 
R~ ; hence So = Ro + R~, which completes the proof. �9 

Question 1. Does the statement remain valid if S has no unit? 
A *-ring S is said to be a Baer*-ring (respectively Rickart*-ring) if, for 

each R e ~  [respectively "principal" right annihilator R = r({s} ) with seS], 
there exists a projection peS, i.e., an element p with p2=p=p., such that 
R =pS. 

We remark that in the literature the concept of a Baer*-ring is used in 
different ways. We follow the concept of Berber�9 (1972). 
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A Baer*-ring S admits a multiplicative unit 1, and, ifp E S is a projection, 
then also 1 - p  is a projection. Moreover, (pS)  • = (1 -p )S .  Therefore, Baer*- 
rings are APP-rings. This is not true for Rickart*-rings, as will be seen below. 
One of  the best known examples of  a Baer*-ring is the *-ring of bounded 
linear operators on a complex Hilbert space, where T* is defined as the 
adjoint operator of  a given operator T. It contains the *-symmetric ideal of  
all compact operators, which forms a Rickart*-algebra. 

From Theorems 3.3 and 3.5 immediately follows: 

Corollary 3.6. The right annihilator lattice of  the *-ring of  all compact 
operators is a complete orthomodular lattice. 

Finally, let us show that, in the commutative case, AAP-rings do not 
form a new class of  *-rings. 

Theorem 3. 7. A commutative *-ring S is an AAP-ring iff it is a Baer*- 
ring. 

Proof Let S be a commutative AAP-ring and R ~ .  Choose elements 
s in R and t in R • with I = s + t. Then 1 = s*s + t* t and, therefore, s*s = (s 's) 2 
and t*t = (t ' t )  2. Now, p =s*s and 1 - p =  t*t are projections and, obviously, 
p e R ,  1 - p e R  • pSi_R,  and (1 -p )S~_R  -L. We show p S = R .  If  u e R \ p S ,  
then u ( l - p ) e R  n R • hence u ( 1 - p ) = 0 .  From this we obtain u=up~pS, 
which contradicts our assumption. 

This shows that S is a Baer*-ring. �9 

It is well known that there exist commutative Rickart*-rings which 
fail to be a Baer*-ring, for example, the *-ring of  all complex-valued 
functions on the Cantor discontinuum. These *-rings cannot be AAP-rings 
by Theorem 3.7. 

Obviously, the product of AAP-rings is an AAP-ring, but we do not 
know the behavior of AAP-rings under homomorphisms. 

Question 2. Is the homomorphic image of an AAP-ring an AAP-ring? 
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